Shuffle机制

| 标签 Hadoop  MapReduce  Shuffle 

1 Shuffle机制

Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle。

image

(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

(3)多个溢出文件会被合并成大的溢出文件

(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

(5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据

(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

注意:

(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M。

2 Partition分区

2.1 问题引出

要求将统计结果按照条件输出到不同文件中(分区)。

2.2 默认Partition分区

public class HashPartitioner<K, V> extends Partitioner<K, V> {

  public int getPartition(K key, V value, int numReduceTasks) {
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  }

}

默认分区是根据key的hashCode对ReduceTasks个数取模得到的。用户没法控制哪个key存储到哪个分区。

2.3 自定义Partition步骤

2.3.1 自定义类继承Partitioner,重写getPartition()方法

public class CustomPartitioner extends Partitioner<Text, FlowBean> {
 	@Override
	public int getPartition(Text key, FlowBean value, int numPartitions) {
          // 控制分区代码逻辑
    … …
		return partition;
	}
}

2.3.2 在Job驱动中,设置自定义Partitioner

job.setPartitionerClass(CustomPartitioner.class);

2.3.4 自定义Partition后,要根据自定义Partitioner的逻辑设置相应数量的ReduceTask

job.setNumReduceTasks(5);

2.4 分区总结

(1)如果ReduceTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;

(2)如果1<ReduceTask的数量<getPartition的结果数,则有一部分分区数据无处安放,会Exception;

(3)如果ReduceTask的数量=1,则不管MapTask端输出多少个分区文件,最终结果都交给这一个ReduceTask,最终也就只会产生一个结果文件 part-r-00000;

(4)分区号必须从零开始,逐一累加。

2.5 案例分析

例如:假设自定义分区数为5,则

(1)

job.setNumReduceTasks(1);

会正常运行,只不过会产生一个输出文件

(2)

job.setNumReduceTasks(2); 

会报错

(3)

job.setNumReduceTasks(6); 

大于5,程序会正常运行,会产生空文件

## 3 WritableComparable排序

排序是MapReduce框架中最重要的操作之一。

MapTask和ReduceTask均会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。

默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。

对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序,并将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序。

对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写磁盘上,否则存储在内存中。如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。

排序分类

(1)部分排序

MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序。

(2)全排序

最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。

(3)辅助排序:(GroupingComparator分组)

在Reduce端对key进行分组。应用于:在接收的key为bean对象时,想让一个或几个字段相同(全部字段比较不相同)的key进入到同一个reduce方法时,可以采用分组排序。

(4)二次排序

在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。

自定义排序WritableComparable原理分析

bean对象做为key传输,需要实现WritableComparable接口重写compareTo方法,就可以实现排序。

@Override
public int compareTo(FlowBean bean) {

	int result;
		
	// 按照总流量大小,倒序排列
	if (this.sumFlow > bean.getSumFlow()) {
		result = -1;
	}else if (this.sumFlow < bean.getSumFlow()) {
		result = 1;
	}else {
		result = 0;
	}

	return result;
}

4 Combiner合并

(1)Combiner是MR程序中Mapper和Reducer之外的一种组件。

(2)Combiner组件的父类就是Reducer。

(3)Combiner和Reducer的区别在于运行的位置

Combiner是在每一个MapTask所在的节点运行;

Reducer是接收全局所有Mapper的输出结果;

(4)Combiner的意义就是对每一个MapTask的输出进行局部汇总,以减小网络传输量。

(5)Combiner能够应用的前提是不能影响最终的业务逻辑,而且,Combiner的输出kv应该跟Reducer的输入kv类型要对应起来。

Mapper

3 5 7 ->(3+5+7)/3=5

2 6 ->(2+6)/2=4

Reducer

(3+5+7+2+6)/5=23/5 不等于 (5+4)/2=9/2

(6)自定义Combiner实现步骤

(a)自定义一个Combiner继承Reducer,重写Reduce方法

public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {

    private IntWritable outV = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

        int sum = 0;
        for (IntWritable value : values) {
            sum += value.get();
        }
     
        outV.set(sum);
     
        context.write(key,outV);
    }
}

(b)在Job驱动类中设置:

job.setCombinerClass(WordCountCombiner.class);

上一篇     下一篇